Trigonometric Trajectories

Australian curriculum number (ACMMG245; ACMMG276)

Students’ understanding of trigonometric and Pythagorean relationships are reinforced through two engaging real-world contexts: researching and building a thrilling (yet safe) zipline ride for a doll, and outlining a proposal for building glider poles in their local area.

This sequence is for students who are familiar with Pythagoras’ Theorem and angles of depression/elevation. There are opportunities for students to independently design and conduct practical experiments by creating models, drawing diagrams and conducting and refining practical experiments.


Lesson 1: World’s Greatest Ziplines

Students apply known trigonometric and Pythagorean relationships to investigate the dimensions of adventure ziplines around the world. They plan, diagram, model and construct a zipline for a Barbie doll.

Lesson 2: Glider Poles

Students learn about the importance of building “glider poles” by the sides of highways to allow gliding mammals to cross wide roads, then design a pair of glider poles appropriate for the animals and roads in their region. They use their knowledge of trigonometry, particularly angles of elevation and depression.


Last updated October 31 2018.